Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.200
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(17): e2403206121, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38630725

RESUMO

Mycobacterium abscessus is increasingly recognized as the causative agent of chronic pulmonary infections in humans. One of the genes found to be under strong evolutionary pressure during adaptation of M. abscessus to the human lung is embC which encodes an arabinosyltransferase required for the biosynthesis of the cell envelope lipoglycan, lipoarabinomannan (LAM). To assess the impact of patient-derived embC mutations on the physiology and virulence of M. abscessus, mutations were introduced in the isogenic background of M. abscessus ATCC 19977 and the resulting strains probed for phenotypic changes in a variety of in vitro and host cell-based assays relevant to infection. We show that patient-derived mutational variations in EmbC result in an unexpectedly large number of changes in the physiology of M. abscessus, and its interactions with innate immune cells. Not only did the mutants produce previously unknown forms of LAM with a truncated arabinan domain and 3-linked oligomannoside chains, they also displayed significantly altered cording, sliding motility, and biofilm-forming capacities. The mutants further differed from wild-type M. abscessus in their ability to replicate and induce inflammatory responses in human monocyte-derived macrophages and epithelial cells. The fact that different embC mutations were associated with distinct physiologic and pathogenic outcomes indicates that structural alterations in LAM caused by nonsynonymous nucleotide polymorphisms in embC may be a rapid, one-step, way for M. abscessus to generate broad-spectrum diversity beneficial to survival within the heterogeneous and constantly evolving environment of the infected human airway.


Assuntos
Mycobacterium abscessus , Humanos , Proteínas de Bactérias/genética , Lipopolissacarídeos/química , Mutação
2.
Org Lett ; 26(10): 2103-2107, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38443201

RESUMO

A chemical synthesis of a unique nanosaccharide fragment from Helicobacter pylori lipopolysaccharide was achieved via a convergent glycosylation method. Challenges involved in the synthesis include the highly stereoselective construction of ß-3-deoxy-d-manno-oct-2-ulosonic acid (Kdo) and two 1,2-cis-glycosidic linkages, as well as the formation of a branched 2,7-disubstituted heptose subunit. Hydrogen-bond mediated aglycone delivery strategy and benzoyl-directing remote participation effect were employed, respectively, for the efficient generation of the desired ß-Kdo glycoside and 1,2-cis-α-l-fucoside/d-glucoside. Moreover, the key branched framework was successfully established through a [(7 + 1) + 1] assembly approach involving the stepwise glycosylation of the heptasaccharide alcohol with two monosaccharide donors. The synthesized 1 containing a propylamine linker at the reducing end can be covalently bound to a carrier protein for further immunological studies.


Assuntos
Glicosídeos , Lipopolissacarídeos , Lipopolissacarídeos/química , Glicosídeos/química
3.
Carbohydr Res ; 538: 109089, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38513463

RESUMO

Diazotrophic bacteria of the genus Azospirillum are known widely, because they are ubiquitous in the rhizosphere and can promote the growth and performance of nonlegume plants. Recently, more Azospirillum species have been isolated from sources other than plants or soil. We report the structures of the O polysaccharides (OPSs) from the lipopolysaccharides of the type strains A. thiophilum BV-ST (1) and A. griseum L-25-5w-1T (2), isolated from aquatic environments. Both structures have a common tetrarhamnan in the repeating-unit, which is decorated with a side xylose in the OPS of A. thiophilum BV-ST.


Assuntos
Azospirillum , Lipopolissacarídeos , Lipopolissacarídeos/química , Azospirillum/química , Polissacarídeos
4.
Int J Mol Sci ; 25(5)2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38474006

RESUMO

The lipopolysaccharide (LPS) that resides on the outermost surface and protects Gram-negative bacteria from host defenses is one of the key components leading to Salmonella infection, particularly the endotoxic lipid A domain of LPS. Lipid A modifications have been associated with several genes such as the arnT that encodes 4-amino-4-deoxy-L-arabinose transferase, which can be critical for bacteria to resist cationic antimicrobial peptides and interfere with host immune recognition. However, the association of arnT with virulence is not completely understood. Thus, this study aimed to elucidate the interrelationship of the major lipid A modification gene arnT with Salmonella Typhimurium virulence. We observed that the arnT-deficient S. Typhimurium (JOL2943), compared to the wild type (JOL401), displayed a significant decrease in several virulence phenotypes such as polymyxin B resistance, intracellular survival, swarming, and biofilm and extracellular polymeric substance (EPS) production. Interestingly, the cell-surface hydrophobicity, adhesion, and invasion characteristics remained unaffected. Additionally, LPS isolated from the mutant induced notably lower levels of endotoxicity-related cytokines in RAW and Hela cells and mice, particularly IL-1ß with a nine-fold decrease, than WT. In terms of in vivo colonization, JOL2943 showed diminished presence in internal organs such as the spleen and liver by more than 60%, while ileal infectivity remained similar to JOL401. Overall, the arnT deletion rendered the strain less virulent, with low endotoxicity, maintained gut infectivity, and reduced colonization in internal organs. With these ideal characteristics, it can be further explored as a potential attenuated Salmonella strain for therapeutics or vaccine delivery systems.


Assuntos
Lipídeo A , Salmonella typhimurium , Humanos , Animais , Camundongos , Salmonella typhimurium/genética , Lipídeo A/química , Lipopolissacarídeos/química , Virulência , Matriz Extracelular de Substâncias Poliméricas , Células HeLa , Proteínas de Bactérias/genética
5.
Carbohydr Polym ; 332: 121928, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38431400

RESUMO

Published work has shown that glycoconjugate vaccines, based on truncated detoxified lipopolysaccharides from Moraxella catarrhalis attached through their reducing end to a carrier protein, gave good protection for all three serotypes A, B, and C in mice immunisation experiments. The (from the non-reducing end) truncated LPS structures were obtained from bacterial glycosyl transferase knock-out mutants and contained the de-esterified Lipid A, two Kdo residues and five glucose moieties. This work describes the chemical synthesis of the same outer Moraxella LPS structures, spacer-equipped and further truncated from the reducing end, i.e., without the Lipid A part and containing four or five glucose moieties or four glucose moieties and one Kdo residue, and their subsequent conjugation to a carrier protein via a five­carbon bifunctional spacer to form glycoconjugates. Immunisation experiments both in mice and rabbits of these gave a good antibody response, being 2-7 times that of pre-immune sera. However, the sera produced only recognized the immunizing glycan immunogens and failed to bind to native LPS or whole bacterial cells. Comparative molecular modelling of three alternative antigens shows that an additional (2 â†’ 4)-linked Kdo residue, not present in the synthetic structures, has a significant impact on the shape and volume of the molecule, with implications for antigen binding and cross-reactivity.


Assuntos
Lipopolissacarídeos , Moraxella catarrhalis , Coelhos , Animais , Camundongos , Lipopolissacarídeos/química , Lipídeo A , Anticorpos Antibacterianos , Glicoconjugados , Oligossacarídeos/química , Glucose , Proteínas de Transporte
6.
Int J Mol Sci ; 25(4)2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38396650

RESUMO

Lipopolysaccharides (LPSs) are major components of the outer membranes of Gram-negative bacteria. In this work, the structure of the O-polysaccharide of Ochrobactrum quorumnocens T1Kr02 was identified by nuclear magnetic resonance (NMR), and the physical-chemical properties and biological activity of LPS were also investigated. The NMR analysis showed that the O-polysaccharide has the following structure: →2)-ß-d-Fucf-(1→3)-ß-d-Fucp-(1→. The structure of the periplasmic glucan coextracted with LPS was established by NMR spectroscopy and chemical methods: →2)-ß-d-Glcp-(1→. Non-stoichiometric modifications were identified in both polysaccharides: 50% of d-fucofuranose residues at position 3 were O-acetylated, and 15% of d-Glcp residues at position 6 were linked with succinate. This is the first report of a polysaccharide containing both d-fucopyranose and d-fucofuranose residues. The fatty acid analysis of the LPS showed the prevalence of 3-hydroxytetradecanoic, hexadecenoic, octadecenoic, lactobacillic, and 27-hydroxyoctacosanoic acids. The dynamic light scattering demonstrated that LPS (in an aqueous solution) formed supramolecular particles with a size of 72.2 nm and a zeta-potential of -21.5 mV. The LPS solution (10 mkg/mL) promoted the growth of potato microplants under in vitro conditions. Thus, LPS of O. quorumnocens T1Kr02 can be recommended as a promoter for plants and as a source of biotechnological production of d-fucose.


Assuntos
Lipopolissacarídeos , Ochrobactrum , Lipopolissacarídeos/química , Fucose/química , Antígenos O/química , Bactérias
7.
J Colloid Interface Sci ; 659: 397-412, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38183806

RESUMO

BACKGROUND: Clinical treatments ofgastric infections using antibiotics suffer from the undesired killing of commensal bacteria and emergence of antibiotic resistance. It is desirable to develop pH-responsive antimicrobial peptides (AMPs) that kill pathogenic bacteria such as H. pyloriand resistant E. coli under acidic environment with minimal impact to commensal bacteria whilst not causing antibiotic resistance. EXPERIMENTS: Using a combined approach of cell assays, molecular dynamics (MD) simulations and membrane models facilitating biophysical and biochemical measurements including small angle neutron scattering (SANS), we have characterized the pH-responsive physiochemical properties and antimicrobial performance of two amphiphilic AMPs, GIIKDIIKDIIKDI-NH2 and GIIKKIIDDIIKKI-NH2 (denoted as 3D and 2D, respectively), that were designed by selective substitutions of cationic residues of Lys (K) in the extensively studied AMP G(IIKK)3I-NH2 with anionic residue Asp (D). FINDINGS: Whilst 2D kept non-ordered coils across the entire pH range studied, 3D displayed a range of secondary structures when pH was shifted from basic to acidic, with distinct self-assembly into nanofibers in aqueous environment. Further experimental and modeling studies revealed that the AMPs interacted differently with the inner and outer membranes of Gram-negative bacteria in a pH-responsive manner and that the structural features characterized by membrane leakage and intramembrane nanoaggregates revealed from fluorescence spectroscopy and SANS were well linked to antimicrobial actions. Different antimicrobial efficacies of 2D and 3D were underlined by the interplay between their ability to bind to the outer membrane lipid LPS (lipopolysaccharide), outer membrane permeability change and inner membrane depolarization and leakage. Furthermore, AMP's binding with the inner membrane under acidic condition caused both the dissipation of membrane potential (Δψ) and the continuous dissipation of transmembrane ΔpH, with Δψ and ΔpH being the key components of the proton motive force. Combinations of antibiotic (Minocycline) with the pH-responsive AMP generated the synergistic effects against Gram-negative bacteria only under acidic condition. These features are crucial to target applications to gastric infections, anti-acne and wound healing.


Assuntos
Antibacterianos , Anti-Infecciosos , Antibacterianos/química , Peptídeos Catiônicos Antimicrobianos/química , Escherichia coli , Bactérias Gram-Negativas , Anti-Infecciosos/farmacologia , Lipopolissacarídeos/química , Bactérias/metabolismo , Concentração de Íons de Hidrogênio , Testes de Sensibilidade Microbiana
8.
Int J Biol Macromol ; 261(Pt 1): 129516, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38278393

RESUMO

The lipopolysaccharides of Herbaspirillum lusitanum P6-12T (HlP6-12T) and H. frisingense GSF30T (HfGSF30T) was isolated by phenol-water extraction from bacterial cells and was characterized using chemical analysis and SDS-PAGE. It was shown that these bacteria produce LPSs that differ in their physicochemical properties and macromolecular organization. In this paper, the lipid A structure of the HlP6-12T LPS, was characterized through chemical analyses and matrix-assisted laser desorption ionization (MALDI) mass spectrometry. To prove the effect of the size of micelles on their bioavailability, we examined the activity of both LPSs toward the morphology of wheat seedlings. Analysis of the HlP6-12T and HfGSF30T genomes showed no significant differences between the operons that encode proteins involved in the biosynthesis of the lipids A and core oligosaccharides. The difference may be due to the composition of the O-antigen operon. HfGSF30T has two copies of the rfb operon, with the main one divided into two fragments. In contrast, the HlP6-12T genome contains only a single rfb-containing operon, and the other O-antigen operons are not comparable at all. The integrity of O-antigen-related genes may also affect LPS variability of. Specifically, we have observed a hairpin structure in the middle of the O-antigen glycosyltransferase gene, which led to the division of the gene into two fragments, resulting in incorrect protein synthesis and potential abnormalities in O-antigen production.


Assuntos
Herbaspirillum , Lipopolissacarídeos , Lipopolissacarídeos/química , Antígenos O/metabolismo , Interações entre Hospedeiro e Microrganismos , Herbaspirillum/genética , Cromatografia Gasosa-Espectrometria de Massas , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
9.
ACS Infect Dis ; 10(2): 763-778, 2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38259029

RESUMO

Gram-negative bacteria possess a complex structural cell envelope that constitutes a barrier for antimicrobial peptides that neutralize the microbes by disrupting their cell membranes. Computational and experimental approaches were used to study a model outer membrane interaction with an antimicrobial peptide, melittin. The investigated membrane included di[3-deoxy-d-manno-octulosonyl]-lipid A (KLA) in the outer leaflet and 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine (POPE) in the inner leaflet. Molecular dynamics simulations revealed that the positively charged helical C-terminus of melittin anchors rapidly into the hydrophilic headgroup region of KLA, while the flexible N-terminus makes contacts with the phosphate groups of KLA, supporting melittin penetration into the boundary between the hydrophilic and hydrophobic regions of the lipids. Electrochemical techniques confirmed the binding of melittin to the model membrane. To probe the peptide conformation and orientation during interaction with the membrane, polarization modulation infrared reflection absorption spectroscopy was used. The measurements revealed conformational changes in the peptide, accompanied by reorientation and translocation of the peptide at the membrane surface. The study suggests that melittin insertion into the outer membrane affects its permeability and capacitance but does not disturb the membrane's bilayer structure, indicating a distinct mechanism of the peptide action on the outer membrane of Gram-negative bacteria.


Assuntos
Peptídeos Antimicrobianos , Lipopolissacarídeos , Lipopolissacarídeos/química , Meliteno/química , Peptídeos/química , Bactérias Gram-Negativas/metabolismo
10.
J Chem Theory Comput ; 20(4): 1704-1716, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-37676287

RESUMO

The outer lipopolysaccharide (LPS) membrane of Gram-negative bacteria forms the main barrier for transport of antimicrobial molecules into the bacterial cell. In this study we develop coarse-grained models for the outer membrane of Escherichia coli in the Martini-3 framework. The coarse-grained model force field was parametrized and validated using all-atom simulations of symmetric membranes of lipid A and rough LPS as well as a complete asymmetric membrane of LPS with the O-antigen. The bonded parameters were obtained using an iterative refinement procedure with target bonded distributions obtained from all-atom simulations. The membrane thickness, area of the LPS, and density distributions for the different regions as well as the water and ion densities in Martini-3 simulations show excellent agreement with the all-atom data. Additionally the solvent accessible surface area for individual molecules in water was found to be in good agreement. The binding of calcium ions with phosphate and carboxylate moieties of LPS is accurately captured in the Martini-3 model, indicative of the integrity of the highly negatively charged LPS molecules in the outer membranes of Gram-negative bacteria. The melting transition of the coarse-grained lipid A membrane model was found to occur between 300 and 310 K, and the model captured variations in area per LPS, order parameter, and membrane thickness across the melting transition. Our study reveals that the proposed Martini-3 models for LPS are able to capture the physicochemical balance of the complex sugar architecture of the outer membrane of Escherichia coli. The coarse-grained models developed in this study would be useful for determining membrane protein interactions and permeation of potential antimicrobials through bacterial membranes at mesoscopic spatial and temporal scales.


Assuntos
Lipídeo A , Lipopolissacarídeos , Lipopolissacarídeos/química , Escherichia coli , Simulação de Dinâmica Molecular , Bactérias Gram-Negativas/química , Água
11.
Carbohydr Polym ; 326: 121581, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38142087

RESUMO

Klebsiella pneumoniae is one of the priority objects for the development of new therapies against infections. The species has been perceived as of limited variety of O antigens (11 O serotypes identified to date). That trait makes lipopolysaccharide an attractive target for protective antibodies. Nowadays, K. pneumoniae O antigens encoding genes are often analysed by bioinformatic tools, such as Kaptive, indicating higher actual diversity of the O antigen loci. One of the novel K. pneumoniae O loci for which the antigen structure has not been elucidated so far is OL101. In this study, four clinical isolates predicted as OL101 were characterized and found to have the O antigen structure composed of ß-Kdop-[→3)-α-l-Rhap-(1→4)-α-d-Glcp-(1→]n, representing a novel serotype O13. Identification of the ß-Kdop terminus was based on the analysis of the complete LPS molecule by the HR-MAS NMR spectroscopy. The bioinformatic analysis of 71,377 K. pneumoniae genomes from public databases (July 2023) revealed a notable OL101 prevalence of 6.55 %.


Assuntos
Infecções por Klebsiella , Antígenos O , Humanos , Antígenos O/genética , Antígenos O/química , Klebsiella pneumoniae/genética , Sorogrupo , Lipopolissacarídeos/química
12.
Nanoscale ; 16(2): 887-902, 2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38105768

RESUMO

Gram-negative sepsis has become a substantial and escalating global healthcare challenge due to the growing antibiotic resistance crisis and the sluggish development of new antibiotics. LL-37, a unique Cathelicidin species found in humans, exhibits a wide range of bioactive properties, including direct bactericidal effects, inflammation regulation, and LPS neutralization. KR-12, the smallest yet potent peptide fragment of LL-37, has been modified to create more effective antimicrobials. In this study, we designed two myristoylated derivatives of KR-12, referred to as Myr-KR-12N and Myr-KR-12C. These derivatives displayed remarkable ability to spontaneously assemble into nanoparticles when mixed with deionized water. Myristoylated KR-12 derivatives exhibited broad-spectrum and intensified bactericidal activity by disrupting bacterial cell membranes. In particular, Myr-KR-12N showed superior capability to rescue mice from lethal E. coli-induced sepsis in comparison with the conventional antibiotic meropenem. We also confirmed that the myristoylated KR-12 nanobiotic possesses significant LPS binding capacity and effectively reduces inflammation in vitro. In an in vivo context, Myr-KR-12N outperformed polymyxin B in rescuing mice from LPS-induced sepsis. Crucially, toxicological assessments revealed that neither Myr-KR-12N nor Myr-KR-12C nanobiotics induced meaningful hemolysis or caused damage to the liver and kidneys. Collectively, our study has yielded an innovative nanobiotic with dual capabilities of bactericidal action and LPS-neutralization, offering substantial promise for advancing the clinical translation of antimicrobial peptides and the development of novel antibiotics. This addresses the critical need for effective solutions to combat Gram-negative sepsis, a pressing global medical challenge.


Assuntos
Infecções por Escherichia coli , Sepse , Humanos , Animais , Camundongos , Peptídeos Catiônicos Antimicrobianos/farmacologia , Peptídeos Catiônicos Antimicrobianos/química , Lipopolissacarídeos/química , Escherichia coli/metabolismo , Catelicidinas/química , Catelicidinas/metabolismo , Catelicidinas/farmacologia , Bactérias , Sepse/tratamento farmacológico , Antibacterianos/química , Testes de Sensibilidade Microbiana
13.
Carbohydr Res ; 534: 108983, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37980861

RESUMO

Pectobacterium brasiliense is a widely distributed phytopathogenic bacterium that causes diseases such as soft rot and blackleg, leading to significant yield losses in potatoes as well as other vegetables and ornamental plants. Lipopolysaccharide (LPS) is an important virulence factor that plays an essential role in colonisation of plant tissues and overcoming the host defence mechanisms. The O-polysaccharide from the LPS of P. brasiliense strain NCPPB 4609TS (=CFBP 6617TS = LMG 21371TS = IFB5390) was structurally characterised using spectroscopic techniques and chemical methods. The analyses revealed that the polysaccharide repeating unit consists of Gal, GlcN and an unusual 3-amino-3,6-dideoxyglucose decorated with (R)-3-hydroxybutyric acid according to the structure shown below: In addition, another polysaccharide was isolated from bacterial cells, analysis of which led to the identification of an enterobacterial common antigen, containing N-acetyl-d-glucosamine, N-acetyl-d-mannosaminouronic acid, and 4-acetamido-4,6-dideoxy-d-galactose.


Assuntos
Antígenos O , Pectobacterium , Antígenos O/química , Lipopolissacarídeos/química
14.
Int J Mol Sci ; 24(22)2023 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-38003613

RESUMO

The aim of the study was the serological and structural characterization of the lipopolysaccharide (LPS) O antigen from P. mirabilis Dm55 coming from the urine of a patient from Lodz. The Dm55 LPS was recognized in ELISA only by the O54 antiserum, suggesting a serological distinction of the Dm55 O antigen from all the 84 Proteus LPS serotypes described. The obtained polyclonal rabbit serum against P. mirabilis Dm55 reacted in ELISA and Western blotting with a few LPSs (including O54), but the reactions were weaker than those observed in the homologous system. The LPS of P. mirabilis Dm55 was subjected to mild acid hydrolysis, and the obtained high-molecular-mass O polysaccharide was chemically studied using sugar and methylation analyses, mass spectrometry, and 1H and 13C NMR spectroscopy, including 1H,1H NOESY, and 1H,13C HMBC experiments. The Dm55 O unit is a branched three-saccharide, and its linear fragment contains α-GalpNAc and ß-Galp, whereas α-GlcpNAc occupies a terminal position. The Dm55 OPS shares a disaccharide epitope with the Proteus O54 antigen. Due to the structural differences of the studied O antigen from the other described Proteus O polysaccharides, we propose to classify the P. mirabilis Dm55 strain to a new Proteus O85 serogroup.


Assuntos
Lipopolissacarídeos , Proteus mirabilis , Animais , Humanos , Coelhos , Lipopolissacarídeos/química , Sorogrupo , Antígenos O/química , Sequência de Carboidratos , Carboidratos
15.
Anal Chem ; 95(46): 16796-16800, 2023 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-37943784

RESUMO

Lipopolysaccharides (LPSs) are a hallmark virulence factor of Gram-negative bacteria. They are complex, structurally heterogeneous mixtures due to variations in number, type, and position of their simplest units: fatty acids and monosaccharides. Thus, LPS structural characterization by traditional mass spectrometry (MS) methods is challenging. Here, we describe the benefits of field asymmetric ion mobility spectrometry (FAIMS) for analysis of an intact R-type lipopolysaccharide complex mixture (lipooligosaccharide; LOS). Structural characterization was performed using Escherichia coli J5 (Rc mutant) LOS, a TLR4 agonist widely used in glycoconjugate vaccine research. FAIMS gas-phase fractionation improved the (S/N) ratio and number of detected LOS species. Additionally, FAIMS allowed the separation of overlapping isobars facilitating their tandem MS characterization and unequivocal structural assignments. In addition to FAIMS gas-phase fractionation benefits, extra sorting of the structurally related LOS molecules was further accomplished using Kendrick mass defect (KMD) plots. Notably, a custom KMD base unit of [Na-H] created a highly organized KMD plot that allowed identification of interesting and novel structural differences across the different LOS ion families, i.e., ions with different acylation degrees, oligosaccharides composition, and chemical modifications. Defining the composition of a single LOS ion by tandem MS along with the organized KMD plot structural network was sufficient to deduce the composition of 181 LOS species out of 321 species present in the mixture. The combination of FAIMS and KMD plots allowed in-depth characterization of the complex LOS mixture and uncovered a wealth of novel information about its structural variations.


Assuntos
Espectrometria de Mobilidade Iônica , Lipopolissacarídeos , Humanos , Lipopolissacarídeos/química , Cefotaxima , Espectrometria de Massas em Tandem , Íons/química , Escherichia coli
16.
Nature ; 623(7988): 814-819, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37938784

RESUMO

Gram-negative bacteria are surrounded by two membranes. A special feature of the outer membrane is its asymmetry. It contains lipopolysaccharide (LPS) in the outer leaflet and phospholipids in the inner leaflet1-3. The proper assembly of LPS in the outer membrane is required for cell viability and provides Gram-negative bacteria intrinsic resistance to many classes of antibiotics. LPS biosynthesis is completed in the inner membrane, so the LPS must be extracted, moved across the aqueous periplasm that separates the two membranes and translocated through the outer membrane where it assembles on the cell surface4. LPS transport and assembly requires seven conserved and essential LPS transport components5 (LptA-G). This system has been proposed to form a continuous protein bridge that provides a path for LPS to reach the cell surface6,7, but this model has not been validated in living cells. Here, using single-molecule tracking, we show that Lpt protein dynamics are consistent with the bridge model. Half of the inner membrane Lpt proteins exist in a bridge state, and bridges persist for 5-10 s, showing that their organization is highly dynamic. LPS facilitates Lpt bridge formation, suggesting a mechanism by which the production of LPS can be directly coupled to its transport. Finally, the bridge decay kinetics suggest that there may be two different types of bridges, whose stability differs according to the presence (long-lived) or absence (short-lived) of LPS. Together, our data support a model in which LPS is both a substrate and a structural component of dynamic Lpt bridges that promote outer membrane assembly.


Assuntos
Membrana Externa Bacteriana , Proteínas de Transporte , Bactérias Gram-Negativas , Lipopolissacarídeos , Proteínas de Membrana , Membrana Externa Bacteriana/química , Membrana Externa Bacteriana/metabolismo , Proteínas da Membrana Bacteriana Externa/química , Proteínas da Membrana Bacteriana Externa/metabolismo , Transporte Biológico , Proteínas de Transporte/química , Proteínas de Transporte/metabolismo , Escherichia coli/química , Escherichia coli/citologia , Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Bactérias Gram-Negativas/química , Bactérias Gram-Negativas/citologia , Bactérias Gram-Negativas/metabolismo , Lipopolissacarídeos/química , Lipopolissacarídeos/metabolismo , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo
17.
Arh Hig Rada Toksikol ; 74(3): 145-166, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37791675

RESUMO

Polymyxin antibiotics are the last resort for treating patients in intensive care units infected with multiple-resistant Gram-negative bacteria. Due to their polycationic structure, their mode of action is based on an ionic interaction with the negatively charged lipid A portion of the lipopolysaccharide (LPS). The most prevalent polymyxin resistance mechanisms involve covalent modifications of lipid A: addition of the cationic sugar 4-amino-L-arabinose (L-Ara4N) and/or phosphoethanolamine (pEtN). The modified structure of lipid A has a lower net negative charge, leading to the repulsion of polymyxins and bacterial resistance to membrane disruption. Genes encoding the enzymatic systems involved in these modifications can be transferred either through chromosomes or mobile genetic elements. Therefore, new approaches to resistance diagnostics have been developed. On another note, interfering with these enzymatic systems might offer new therapeutic targets for drug discovery. This literature review focuses on diagnostic approaches based on structural changes in lipid A and on the therapeutic potential of molecules interfering with these changes.


Assuntos
Lipopolissacarídeos , Polimixinas , Humanos , Polimixinas/uso terapêutico , Polimixinas/farmacologia , Lipopolissacarídeos/química , Lipídeo A/química , Farmacorresistência Bacteriana/genética , Antibacterianos/uso terapêutico , Antibacterianos/farmacologia
18.
Mol Med Rep ; 28(4)2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37681466

RESUMO

Pathological epithelial­mesenchymal transition (EMT) has been shown to fulfill a key role in the development and progression of a variety of lung diseases. It has been demonstrated that the inflammatory microenvironment is a decisive factor in inducing pathological EMT. Hexacylated lipopolysaccharide (LPS) [or proacylated lipopolysaccharide (P­LPS), which functions as proinflammatory lipopolysaccharide] is one of the most effective Toll­like receptor 4 (TLR4) agonists. Furthermore, the pentacylated and tetracylated form of lipopolysaccharide (or A­LPS, which functions as anti­inflammatory lipopolysaccharide) has been shown to elicit competitive antagonistic effects against the pro­inflammatory activity of P­LPS. At present, it remains unclear whether LPS extracted from Bacteroides vulgatus (BV­LPS) can prevent LPS extracted from Escherichia coli (EC­LPS) from inducing pathological EMT. In the present study, A549 cells and C57BL/6 mice lung tissue were both induced by EC­LPS (P­LPS) and BV­LPS (A­LPS), either alone or in combination. The anticipated anti­inflammatory effects of BV­LPS were analyzed by examining the lung coefficient, lung pathology, A549 cell morphology and expression levels both of the inflammatory cytokines, IL­1ß, IL­6 and TNF­α and of the EMT signature proteins, epithelial cadherin (E­cadherin), α­smooth muscle actin (α­SMA) and vimentin. In addition, the expression levels of TLR4, bone morphogenic protein and activin membrane­bound inhibitor (BAMBI) and Snail were detected and the possible mechanism underlying how BV­LPS may prevent EC­LPS­induced EMT was analyzed. The results obtained showed that the morphology of the A549 cells was significantly polarized, the lung index was significantly increased, the alveolar structure was collapsed and the expression levels of IL­1ß, IL­6, TNF­α, α­SMA, vimentin, TLR4 and Snail in both lung tissue and A549 cells were significantly increased, whereas those of E­cadherin and BAMBI were significantly decreased. Treatment with BV­LPS in combination with EC­LPS was found to reverse these changes. In conclusion, the present study demonstrated that BV­LPS is able to effectively prevent EC­LPS­induced EMT in A549 cells and in mouse lung tissue and furthermore, the underlying mechanism may be associated with inhibition of the TLR4/BAMBI/Snail signaling pathway.


Assuntos
Bacteroides , Transição Epitelial-Mesenquimal , Escherichia coli , Lipopolissacarídeos , Pulmão , Lipopolissacarídeos/química , Escherichia coli/química , Escherichia coli/fisiologia , Bacteroides/química , Bacteroides/fisiologia , Acilação , Inflamação , Células A549 , Pulmão/patologia , Transdução de Sinais , Humanos , Animais , Camundongos , Camundongos Endogâmicos C57BL
19.
Chembiochem ; 24(23): e202300552, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37731010

RESUMO

Lipopolysaccharides from the commensal gut-associated microbiota are interesting biomolecules for the treatment of various inflammatory diseases. Different from pathogenic lipopolysaccharides, commensal lipopolysaccharides have distinct chemical structures and mediate beneficial homeostasis with the immune system of the host. However, the accessibility issues of homogenous and pure commensal lipopolysaccharides hampered the in-depth studies of their functions. In this concept article, we highlight the recent synthesis of lipopolysaccharides from gut-associated lymphoid-tissue-resident Alcaligenes faecalis and Bacteroides vulgatus, which hopes to inspire the more efforts devoting to these fantastic biomolecules.


Assuntos
Microbioma Gastrointestinal , Lipopolissacarídeos , Lipopolissacarídeos/química
20.
Int J Biol Macromol ; 253(Pt 5): 126825, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-37696369

RESUMO

Teichoic acid (TA) is a weakly anionic polymer present in the cell walls of Gram-positive bacteria. It can be classified into wall teichoic acid (WTA) and lipoteichoic acid (LTA) based on its localization in the cell wall. The structure and biosynthetic pathway of TAs are strain-specific and have a significant role in maintaining cell wall stability. TAs have various beneficial functions, such as immunomodulatory, anticancer and antioxidant activities. However, the purity and yield of TAs are generally not high, and different isolation methods may even affect their structural integrity, which limits the research progress on the probiotic functions of TA. This paper reviews an overview of the structure and biosynthetic pathway of TAs in different strains, as well as the research progress of the isolation and purification methods of TAs. Furthermore, this review also highlights the current research status on the biological functions of TAs. Through a comprehensive understanding of this review, it is expected to pave the way for advancements in isolating and purifying high-quality TAs and, in turn, lay a foundation for contributing to the development of targeted probiotic therapies.


Assuntos
Parede Celular , Bactérias Gram-Positivas , Parede Celular/química , Bactérias Gram-Positivas/metabolismo , Glicosilação , Ácidos Teicoicos/química , Lipopolissacarídeos/química , Vias Biossintéticas , Polímeros/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...